PDF-optimized LSF vector quantization based on beta mixture models

نویسندگان

  • Zhanyu Ma
  • Arne Leijon
چکیده

The line spectral frequencies (LSF) are known to be the most efficient representation of the linear predictive coding (LPC) parameters from both the distortion and perceptual point of view. By considering the bounded property of the LSF parameters, we apply beta mixture models (BMM) to model the distribution of the LSF parameters. Meanwhile, by following the principles of probability density function (PDF) optimized vector quantization (VQ), we derive the bit allocation strategy for the BMM. The LSF parameters are obtained from the TIMIT database and a practical VQ is designed. By taking the Bayesian information criterion (BIC), the square error (SE) and the spectral distortion (SD) as the criteria, the BMM based VQ outperforms the Gaussian mixture model based VQ with uncorrelated Gaussian component (UGMVQ) by about 1 ∼ 2 bits/vector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance bounds for LPC spectrum quantization

This paper presents a method for obtaining numerical estimates of high rate vector quantization (VQ) performance suitable for sources for which the pdf is not analytically available. In the proposed method, the VQ point density is described from a Gaussian mixture model optimized for the data. Employing this method for LPC spectrum quantization, we obtain high rate expressions for both the aver...

متن کامل

Modelling speech line spectral frequencies with dirichlet mixture models

In this paper, we model the underlying probability density function (PDF) of the speech line spectral frequencies (LSF) parameters with a Dirichlet mixture model (DMM). The LSF parameters have two special features: 1) the LSF parameters have a bounded range; 2) the LSF parameters are in an increasing order. By transforming the LSF parameters to the ΔLSF parameters, the DMM can be used to model ...

متن کامل

COMPANDED LATTICE VQ FOR EFFICIENT PARAMETRIC LPC QUANTIZATION (ThuPmPO1)

Source coding based on Gaussian Mixture Models (GMM) has been recently proposed for LPC quantization. We address in this paper the related problem of designing efficient codebooks for Gaussian vector sources. A new technique of ellipsoidal lattice vector quantization (VQ) is described, based on 1) scalar companding optimized for Gaussian random variables and 2) rectangular lattice codebooks wit...

متن کامل

Speech LSF quantization with rate independent complexity, bit scalability and learning

A computationally efficient, high quality, vector quantization scheme based on a parametric probability density function (PDF) is proposed. In this scheme, speech line spectral frequencies (LSF) are modeled as i.i.d realizations of a multivariate Gaussian mixture density. The mixture model parameters are efficiently estimated using the Expectation Maximization (EM) algorithm. An efficient quant...

متن کامل

不需平行語料而基於共振峰與線頻譜頻率映對之語者特質轉換系統 (A Voice Conversion System based on Formant and LSF Mapping without Using Parallel Corpus) [In Chinese]

Voice conversion has been used in many applications. The methods based on vector quantization codebook and Gaussian mixture models need dynamic time warping on parallel sentence corpus for generating mapping functions. Recent study tries to use less training data, and even without parallel sentence corpus. This paper presents a voice conversion method without using parallel sentence corpus. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010